
HPC and HTC Studies
in CMS

Peter Elmer

Princeton University

Overview

• This is a "grab-bag" talk of various things I think are
interesting which fit under the very general rubric of "HPC and
HTC" studies (which arguably covers many things)

• Some of this is recycled from recent ACAT13 presentations
and/or presentations of CMS people

• Most of it is work by CMS, although a few things are "CMS +
others"

• Much more than 30" of material, will skip some of it, but it is
there for reference

Opportunistic Computing - General Considerations

• We are all interested in using opportunistically resources
belonging to other people. Challenges include:

• access to software

• access to data (with or without local storage) and stageout

• access to conditions

• workload management issues

• New processors (PowerPC) or limited supercomputer OS

Parked Data from 2012 and SDSC
• During 2012 CMS wrote to tape a larger trigger rate than it could immediately

process, with the intention of reconstructing it during the shutdown - "parked"
data

• We got an allocation for a few weeks on Gordon at SDSC (NSF XSEDE) and
decided to use it to process a couple of parked datasets of interest

• http://www.sdsc.edu/supercomputing/gordon/

• Compute: ~16K cores, 4GB/core

• Storage: I/O nodes with SSD, 4PB parallel file system

• InfiniBand

• Provision XSEDE resources as part of OSG ecosystem, Tier1 on-the-fly!

http://www.sdsc.edu/supercomputing/gordon/
http://www.sdsc.edu/supercomputing/gordon/

SDSC Gordon

• CMSSW software installed by hand on I/O node, served via
NFS to compute nodes

• Frontier-squid with disk cache for conditions also installed
on I/O node

• Storage accessible via gridFTP, no SRM. We used ~300TB
for data on their Lustre filesystem (10Gbps peak transfer rate
into SDSC).

• Data transferred in via PhEDEx, local stageout at SDSC with
subsequent transfer via PhEDEx to FNAL.

SDSC Gordon - GlideinWMS setup

• No "grid interface" on Gordon, use ssh and
OSG's BOSCO job submission manager
(basically ssh-aware Condor-G)

• Dedicated factory - some hacking to support
BOSCO and multicore jobs (got 16 core
"whole node" job slot and fed it 16 jobs)

• Up to 4k jobs running at a time, with nearly
100% success rate

• Total 2 weeks to set up, processing took ~1
month, parked datasets processed and
available for physics.

Next steps for opportunistic resource use
(First we take Manhattan,)

• SDSC was a nice first step that also accomplished a significant
amount of useful and timely processing for CMS.

• Ultimately the goal is to have an even lighter footprint at the
opportunistic site

• In addition to GlideinWMS (and BOSCO) two other relevant
technologies: xrootd for data access and CVMFS/Parrot for
software access

• Current work ongoing on opportunistic use of OSG resources:
add use of Parrot wrapped jobs. Now testing with FermiGrid,
another OSG site and a Russian site. Stageout to a CMS site.

Also using xrootd (AAA) for remote data access

Dominated by a few sites at the moment. This is the
beginning of the global data federation (standard sites, not
opportunistic case), but demonstrates the technology.

NERSC

• Next step will be to bring all the pieces together to run on
Carver/Hopper (eventually Edison?) at NERSC

• GlideinWMS, BOSCO, xrootd, CVMPS/Parrot, etc.

• For Hopper/Edison, we will need to use the "Cluster
Compatibility Mode" instead of limited CLE/CNL environment

• http://www.nersc.gov/users/computational-systems/hopper/
cluster-compatibility-mode/

• Work will begin with new person next month

http://www.nersc.gov/users/computational-systems/hopper/cluster-compatibility-mode/
http://www.nersc.gov/users/computational-systems/hopper/cluster-compatibility-mode/

Low Power Computing

• Over the past ten years
processors have hit power
limitations which place
significant constraints on
"Moore's Law" scaling.

• The first casualty was
scaling for single sequential
applications, giving birth to
multi-core processors.

From: "The Future of Computing Performance:

Game Over or Next Level?"

ARM Servers

• This has led to the introduction of ARM-based servers in recent years,
such as the Boston Viridis:

• 192 cores in a 2U rack mount, consuming <300W

• 48 quad-core nodes (1.4GHz Cortex-A9)

• $20k (reported)

• servers with the new ARMv8/64bit cores, expected next year, will likely
be the product that will either create (or not) sufficient market share

• Dell "Copper" - 48 x quad-core=192 ARMv8 cores, 2GB/core, 750W in
a 3U rack mount?

ARM Demonstrator - ODROID U2

• Initial tests done with a small 32bit/
ARMv7 development board

• Exynos4412 Prime CPU

• 1.7GHz Cortex-A9 quad core

• 2GB L-DDR memory (total)

• eMMC, microSD, 2xUSB2.0,
10/100Mbps Ethernet

• $89 (~$233 with cables, cooling fan,
64GB eMMC, power adaptor, ...)

• Fedora 18 ARMv7-A, hard
floats, gcc 4.8, ODROID
kernel

Building for ARM

• Early build attempts done with QEMU. Slow and buggy.

• Now we have a test board: cross compilation or native builds?

• If we eventually do have proper ARMv8/64bit servers with
sufficient throughput for application use, we should be able to
build natively.

• CMS has also invested over the years in optimizing its build
system at many levels.

• The ODROID-U2 is actually reasonably powerful, so try a native
build!

Build Issues

• No Oracle. But by construction no standard CMS grid-capable
workflows can depend on Oracle. Affects a few special things.

• Minor compilation configuration issues: -m32/-m64 don't work, x86-
ish assumptions leading to attempts to use SSE/AVX

• Signedness problems for char/bit-fields (Intel signed, ARM unsigned)

• Compilation of some translation units exhausted virtual memory
(mostly ROOT dictionaries: refactor...)

• Patch needed for ROOT Cintex trampoline, plus one patch for
dictionaries and some runtime issues being investigated

Build Status

• All externals build except Oracle and one online-only package

• 99% of CMSSW builds: a few remaining packages require
Oracle plus a few being iterative broken/fixed as we sort out
various last issues.

• All build recipes/patches available from:

• git://github.com/cms-sw/cmsdist.git

• branch "IB/CMSSW_6_2_X/fc18_armv7hl_gcc480"

Build Times on ODROID-U2

• ~4 hours mostly for gcc 4.8.0, but also a small set of basic
things we need for packaging:

• rpm, apt, zlib, ncurses, nspr, sqlite, etc.

• ~12 hours for all other "externals":

• ROOT, Geant4, Python, Fastjet, Valgrind, gdb, boost, Qt,
all generators, etc. Total of ~125 packages.

• ~25.5 hours for CMS software (CMSSW) - 3.5MSLOC of C
++, plus generated ROOT dictionaries

First Benchmarks - Simulation (no output)

Type Cores TDP
Power

Events/
min/core

Events/
min/Watt

Exynos441
2 Prime @
1.704GHz

4 4W? 1.14 1.14

Xeon
L5520 @
2.27GHz

2x4 120W? 3.50 0.23

Xeon
E5-2630L
@ 2.0GHz

2x6 190W? 3.33 0.21

First Benchmarks - Simulation (no output)

Type Cores full
Power

Events/
min/core

Events/
min/Watt

Exynos441
2 Prime @
1.704GHz

4 6W? 1.14 0.76

Xeon
L5520 @
2.27GHz

2x4 240W 3.50 0.12

Xeon
E5-2630L
@ 2.0GHz

2x6 270W 3.33 0.15

Benchmarks - Notes

• These are very quick and dirty benchmarks, this is a work in progress.
Numbers are "indicative", not final. Only very basic checks have been
that results are consistent. ROOT output is still off.

• For power I used the TDP numbers from www.cpubenchmark.net, plus
the quoted number for the ODROID (roughly measured by us),
obviously not the total power cost especially for the Xeon servers. For
those (second table "full power") I used some numbers from Bernd.

• I used one Nehalem (Q1 2010 release) and one Sandy Bridge (Q2
2012) "L" machine, both at CERN, vocms101 and vocms18. HT was
on for the latter, but I have done just quick single core benchmark
tests.

http://www.cpubenchmark.net
http://www.cpubenchmark.net

Porting IgProf to ARM?

• IgProf (igprof.org) is a sampling performance and memory profiler.
Some notes on an ARMv7 port:

• ARM assembly much simpler than the `x86_64` one, all instructions
are 32bit long: easier to decode. Documentation is excellent.

• However its RISC-ness introduces a few new quirks to be treated
when instrumenting (conditional execution, linker peculiarity, less
space for the actual instrumentation in the preamble).

• RDTSC instruction equivalent is not available in user mode.

• `libunwind` works our of the box, performance to verify

http://igprof.org
http://igprof.org

Multithreaded Framework

• We are currently evolving the CMS event processing
framework to allow for multithreaded execution and in
particular:

• parallel execution of multiple events

• parallel execution of modules (algorithms: producers,
analyzers)

• parallel execution of code within a module

• Underlying technology choice is TBB, eventual use TBB-
enabled multithreaded externals (Geant4, etc.)

Multithreaded Framework
• Objectives:

• Reduce overall memory requirements

• Reduce number of open files, connections, jobs

• Reduce number of output files

• (Eventually) possibly improve throughput through better
behavior of fine-grained parallelism on memory hierarchy

• Overall a more scalable application for the long run for
x86-64, eventually ARM or low power Intel, Xeon Phi?

Multithreaded Framework

• By default code is not run in parallel, requires modification

• Using Clang/LLVM static analyzer to look for thread
unsafe constructs

• Framework ready by fall, expect to deploy for production
in early 2014

Numerical Computing

• A confluence of things has led to a renewed interest in HEP
in the numerical aspects of computing: the transition to
x86-64, "bazaar" evolution of gcc4, various effects of
microprocessor power limitations

• CERN OpenLab/Intel/PH-SFT workshops on numerical
computing, e.g.

• http://indico.cern.ch/conferenceTimeTable.py?
confId=247985#20130527

• Interest in floating point vectorization, required accuracy,
math libraries, etc.

http://indico.cern.ch/conferenceTimeTable.py?confId=247985#20130527
http://indico.cern.ch/conferenceTimeTable.py?confId=247985#20130527

SLC5 math library - "bug fix"

Excellent:

Now results are consistent!

(feraiseexcept function used to raise fp exception when result “unprecise”)

27-8-2012: http://rhn.redhat.com/errata/RHSA-2012-1207.html

From D. Piparo (V. Innocente, T. Hauth)

http://rhn.redhat.com/errata/RHSA-2012-1207.html
http://rhn.redhat.com/errata/RHSA-2012-1207.html
http://rhn.redhat.com/errata/RHSA-2012-1207.html
http://rhn.redhat.com/errata/RHSA-2012-1207.html
http://rhn.redhat.com/errata/RHSA-2012-1207.html
http://rhn.redhat.com/errata/RHSA-2012-1207.html

Effect of libm change

Wait: how much tax payers’
money does this cost?

The modified routines cause
a slow-down of a factor >6
for Exp and important ones
for Sin, Cos and Tan.

Nice to have such a solid reference, but can we afford that in our
production software?

Probably not… What are the alternatives?

From D. Piparo (V. Innocente, T. Hauth)

From D. Piparo (V. Innocente, T. Hauth)

From D. Piparo (V. Innocente, T. Hauth)

From D. Piparo (V. Innocente, T. Hauth)

From D. Piparo (V. Innocente, T. Hauth)

From D. Piparo (V. Innocente, T. Hauth)

From D. Piparo (V. Innocente, T. Hauth)

From D. Piparo (V. Innocente, T. Hauth)

From D. Piparo (V. Innocente, T. Hauth)

Checkpoint-Restart

• It is desirable in certain circumstances to "checkpoint" the
state of a unix process, or set of processes, to disk with the
possibility of restarting it at a later time.

• This can be done in an application-specific custom fashion,
but it requires the addition and maintenance of dedicated
code.

• A generalized technology capable of checkpointing all
types of applications is thus desirable. In fact such
technologies have been in use in High Performance
Computing (HPC) and batch systems since more than 20
years.

Checkpoint-Restart - Interesting Use Cases

• Avoiding CPU-intensive initialization steps in frequently run applications,
perhaps avoid need for conditions or other loading

• Reproducibility of problems in long running jobs for debugging

• The application can be "replayed" from a point just before the error or
crash, rather than from the beginning

• In situations where resources are being used opportunistically, it can be
used to efficiently give access back to the "owner" and then later restart
when resources are free again

• In interactive applications, the current state can be saved ("workspace")

• For long-running parallel applications sensitive to hardware failure, the
state of calculations can be saved periodically to allow restart.

DMTCP

Userspace checkpointing, no

kernel-level access required
Checkpoints multithreaded

applications
Checkpoints distributed

applications

Minimum runtime overhead

Optional compression of
checkpoint images

Key Features

Open source

Can handle fork, exec, ssh,

open file descriptors,

TCP/IP sockets, etc.

Works on linux and

supports a wide range of

kernels

• Distributed MultiThreaded CheckPointing package
(DMTCP), developed at Northeastern University (NEU),
http://dmtcp.sourceforge.net

DMTCP - CMS Example

• Quick test with CMS Framework-based generation/simulation
application, memory footprint ~750MB RSS

• ~10s required to create compressed checkpoint image, 220MB

• 1-2s for uncompressed checkpoint

Trigger checkpoint externally while processing event #5

DMTCP - CMS Example

• And restart:

This was on x86-64, also ARM and Xeon Phi supported

The End

Enough already.....

